Решение уравнений с параметром (Система подготовки к ЕГЭ)

1. Найдите все значения параметра а, при каждом из которых уравнение

\[ \frac{x^2+2x+a}{4x^2-3ax-a^2}=0 \]

имеет ровно два различных корня. Тайм-код: 0:20

(ЕГЭ по математике профильного уровня, основной период / 29 мая 2019)

2. Найдите все значения параметра а, при каждом из которых уравнение

\[ \frac{?^2−10?+?^2}{2?^2−3??−2?^2 }=0 \]

имеет ровно два различных корня. Тайм-код: 8:45

(ЕГЭ по математике профильного уровня, основной период / 29 мая 2019)

3. Найдите все значения параметра а, при каждом из которых уравнение

\[ \frac{?^2+?−?}{?^2−2?+?^2−6?}=0 \]

имеет ровно два различных корня. Тайм-код: 14:38

(ЕГЭ по математике профильного уровня, основной период / 29 мая 2019)

 

Решение уравнения с параметром (Система подготовки к ЕГЭ)

Найдите все значения а, при каждом из которых уравнение

\[ (2?−1)∙ 25^?−?∙5^?+2=⁡0 \]

имеет ровно один корень

(Диагностическая работа в формате ЕГЭ по математике профильного уровня / МЦКО, апрель 2019)

Решение логарифмического неравенства (Система подготовки к ЕГЭ)

Решите неравенство:

\[ log_2⁡(?+8)+log_2⁡(?^2+\frac{2}{?+8})≥2 log_2⁡\frac {?^2+8?+64} {4} −1 \]

(Математика. Подготовка к ЕГЭ / Д. А. Мальцев и др.)

Решение задач экономического содержания (Система подготовки к ЕГЭ)

В июле 2019 года планируется взять кредит в банке на три года в размере S млн рублей, где S – целое число. Условия его возврата таковы: каждый январь долг увеличивается на 30% по сравнению с концом предыдущего года; с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; в июле каждого года долг должен составлять часть кредита в соответствии со представленной таблицей. Найдите наименьшее S, при котором каждая из выплат будет больше 3 млн. руб.
(ЕГЭ-2019. Досрочный период. 29 марта 2019)

 

Решение показательных и логарифмических неравенств (Система подготовки к ЕГЭ)

Решите неравенство:

\[ log_2⁡(?+8)+log_2⁡(?^2+\frac {2}{x+8})≥2 log_2⁡(\frac {?^2+8?+64}{4})−1. \]

(Математика. Подготовка к ЕГЭ / Д. А. Мальцев и др.)

Решение уравнений и неравенств с параметрами (Система подготовки к ЕГЭ)

Найдите все значения параметра a, при каждом из которых уравнение 

\[ ((6?−?^2))^2−108\sqrt{6?−?^2}=?^2−36? \]

имеет хотя бы один корень. (Математика. Подготовка к ЕГЭ / под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова)

Решение задач с экономическим содержанием (банковские вклады и кредиты) (Система подготовки к ЕГЭ)

Николай Сергеевич взял кредит 1 февраля 2015 года на сумму S млн рублей. Условия его возврата таковы:
— 1 марта года сумма долга увеличивается на 10% по сравнению с февралем этого года;
— с 1 мая по 1 августа необходимо выплатить часть долга;
— 28 февраля каждого года долг должен составлять часть кредита в соответствии с таблицей, указанной в задаче.
(Начиная с 2019 года долг равномерно уменьшается на 200 000 рублей в год.)
В каком году Николай Сергеевич планирует совершить последний платеж, если общая сумма выплат равна 17 680 000 рублей?
(Математика. Подготовка к ЕГЭ / под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова)

Друзья! Очень много вопросов поступает о том, что при решении задачи в ответе получается 2044, а в таблице ответов, которая указана в сборнике тестов записано 2045. Я получила официальный комментарий от Сергея Юрьевича Кулабухова (автора задачи). Сергей Юрьевич благодарит всех за внимательное прочтение книги и сожалеет, что при печати книги была допущена опечатка. Правильный ответ: 2044

Решение задач с экономическим содержанием (банковские вклады и кредиты) (Система подготовки к ЕГЭ)

15 декабря планируется взять кредит в банке на 13 месяцев. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 12-й долг должен быть на 50 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 13-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 804 тысяч рублей?  (ЕГЭ-2018, основной период – 1 июня 2018)

Решение простейших логарифмических уравнений (Система подготовки к ЕГЭ)

Уравнение 1

Найдите корень уравнения

\[ l??_{14} (?−3)=???_{14} (8?−31) \]

(Математика. Подготовка к ЕГЭ / под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова)

Уравнение 2

Найдите корень уравнения

\[ ???_4 (?−5)=2 \]

(Математика. Подготовка к ЕГЭ / под редакцией Д.А. Мальцева)

Уравнение 3

Найдите корень уравнения

\[ ???_8 (11−?)=\frac2{3} \]

(Математика. Подготовка к ЕГЭ / под редакцией Д.А. Мальцева)

Уравнение 4

Найдите корень уравнения

\[ ???_8 (38−37?)=???_8 (4−5?)+1 \]

(Математика. Подготовка к ЕГЭ / под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова)

Уравнение 5

Найдите корень уравнения

\[ ???_{?+11} 625=4 \]

(Математика. Подготовка к ЕГЭ / под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова)

Скачать тренажёр «Простейшие логарифмические уравнения (Часть 1)»